
MATH 110 − SOLUTIONS TO THE PRACTICE FINAL

PEYAM TABRIZIAN

Note: There might be some mistakes and typos. Please let me know if you find any!

EXERCISE 1

Theorem: [Cauchy-Schwarz inequality]

Let V be a vector space over F with inner product <,>, and define ‖u‖ = √< u, u >.

Then for all u and v in V :

|< u, v >| ≤ ‖u‖ ‖v‖

Moreover, equality holds if and only if u is a multiple of v or v is a multiple of u

Proof:1

Fix u, v in V .

First of all, the result holds for v = 0, because:

< u, v >=< u, 0 >= 0 ≤ ‖u‖ 0 = ‖u‖ ‖v‖

And also if v = 0, then v = 0u, so v is a multiple of u

Hence, from now on, for the rest of the proof, we may assume v 6= 0.
Now consider < u− av, u− av > , where a ∈ F is to be selected later.

On the one hand, by the nonnegativity axiom of <,>, we have:

< u− av, u− av > ≥ 0 (?)

On the other hand, expanding < u− av, u− av > out, we get:

Date: Monday, April 29th, 2013.
1The proof here is different from the one given in the book, but is equally valid. Feel free to memorize either

one of them
1
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< u− av, u− av > = < u, u > + < u,−av > + < −av, u > + < −av,−av >
= < u, u > −a < u, v > −a < v, u > +aa < v, v >

= ‖u‖2 − a < u, v > −a < u, v >+ |a|2 ‖v‖2

Combining this with (?), we get:

‖u‖2 + a < u, v > +a < v, u > + |a|2 ‖v‖2 ≥ 0 (??)

Now let a = <u,v>
<v,v> = <u,v>

‖v‖2
2 (which is well-defined since v 6= 0)

In particular, we get:

a < u, v >=
< u, v > < u, v >

‖v‖2
=
|< u, v >|2

‖v‖2

and

a< u, v > =
< u, v > < u, v >

‖v‖2
=
|< u, v >|2

‖v‖2

and

|a|2 ‖v‖2 =

(
|< u, v >|
‖v‖2

)2

‖v‖2 =
|< u, v >|2

‖v‖2

Therefore, (??) becomes:

‖u‖2 − |< u, v >|2

‖v‖2
−
���

���|< u, v >|2

‖v‖2
+
���

���|< u, v >|2

‖v‖2
≥ 0

That is:

‖u‖2 − |< u, v >|2

‖v‖2
≥ 0 (? ? ?)

Solving for < u, v >, we get:

|< u, v >|2 ≤ ‖u‖2 ‖v‖2

And taking square roots (given that all the terms are nonnegative), we have:

|< u, v >| ≤ ‖u‖ ‖v‖
Which is the Cauchy-Schwarz inequality!

2The idea is that we want to turn a < v, u > into |<u,v>|2

‖v‖2
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Finally, if equality holds in the Cauchy-Schwarz inequality, that is, if |< u, v >| =
‖u‖ ‖v‖ then working our way backwards, then (? ? ?) becomes an equality, and so (??)
becomes an equality becomes equalities, and in particular, (?) becomes an equality, that is:

< u− av, u− av > = 0

And hence, by the positivity axiom, u− av = 0, that is, u = av, so u is a multiple of v.

Conversely, if u = av for some a ∈ F, then:

|< u, v >| = |< av, v >| = |a < v, v >| |a| |< v, v >| = |a| ‖v‖2 = |a| ‖v‖ ‖v‖ = ‖av‖ ‖v‖ = ‖u‖ ‖v‖

So equality holds in the Cauchy-Schwarz inequality. Similarly if v = au for some
a ∈ F �
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EXERCISE 2

Let (v1, · · · , vm) be a basis forNul(T ), and extend it to a basis (v1, · · · , vm, vm+1, · · · , vn)
of V .

Claim: (T (vm+1), · · · , T (vn)) is a basis of Ran(T ).

Proof: We need to show that the set spans Ran(T ) and is linearly independent

Span:

First of all, each T (vm+1), · · ·T (vn) is in Ran(T ) (by definition of Ran(T )), and
hence, because Ran(T ) is a subspace of W ,

Span(T (vm+1), · · · , T (vn)) ⊆ Ran(T )

Conversely, let w ∈ Ran(T ). Then w = T (v) for some v in V .

But then, since (v1, · · · , vn) is a basis for V , we have v = a1v1+ · · ·+anvn for scalars
a1, · · · , an.

But then:

T (v) = T (a1v1 + · · ·+ anvn)

= a1T (v1) + · · ·+ amT (vm) + am+1T (vm+1) + · · ·+ anT (vn)

= a10 + · · ·+ am0 + am+1T (vm+1) + · · ·+ anT (vn) Because v1, · · · , vm are in Nul(T )

= am+1T (vm+1) + · · · anT (vn)
∈ Span(T (vm+1), · · · , T (vn))

Hence, w = T (v) ∈ Span(T (vm+1), · · · , T (vn)).

Hence, since w was arbitrary, we get:

Ran(T ) ⊆ Span(T (vm+1), · · · , T (vn))
And therefore:

Span(T (vm+1), · · · , T (vn)) = Ran(T )

So T (vm+1), · · · , T (vn) spans Ran(T ).
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Linear independence:

Suppose am+1T (vm+1) + · · ·+ anT (vn) = 0.

Then T (am+1vm+1 + · · ·+ anvn) = 0

Hence am+1vm+1 + · · ·+ anvn ∈ Nul(T )

Hence am+1vm+1 + · · ·+ anvn = a1v1 + · · ·+ amvm for scalars a1, · · · , am,
because (v1, · · · , vm) is a basis for Nul(T ).

Hence −a1v1 − · · · − amvm + am+1vm+1 + · · ·+ anvn = 0.

However, (v1, · · · , vn) is linearly independent, hence −a1 = · · · = −am = am+1 =
· · · = an = 0

Hence am+1 = · · · = an = 0, which is what we wanted to show.

Hence (T (vm+1), · · · , T (vn)) is a basis for Ran(T ), and hence dim(Ran(T )) =
n−m

But then, it follows that:

dim(V ) = n = m+ (n−m) = dim(Nul(T )) + dim(Ran(T ))

�
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EXERCISE 3

Note: The explanations are optional, and are here to convince you why an answer is
true or false.

(a) VERY FALSE !!! Remember that Prop1.9 ONLY works for TWO subspaces!

(Let V = R2, U1 = Span {(1, 0)} (the x−axis), U2 = Span {(0, 1)} (the
y−axis), and U3 = Span {(1, 1)} (the line y = x). Notice that V 6= U1 ⊕
U2 ⊕ U3 because (0, 0) can be written in two different ways as sums of vectors in
U1, U2, U3, namely (0, 0) = (1, 0) + (0,−1) + (0, 0), but also (0, 0) = (1, 0) +
(0, 1) + (−1,−1). This violates the definition of direct sums on page 15)

(b) FALSE

(Let V = R3, and let T ∈ L(V ) be the linear transformation whose matrix

is M(T ) = A =

[
1 0
0 2

]
. Then (1, 0) and (0, 1) are eigenvectors of T , but

(1, 1) = (1, 0) + (0, 1) isn’t)

(c) TRUE
(See Theorem 8.35. For a direct proof: Let m be the minimal polynomial

of T and p be the characteristic polynomial. Then by the division algorithm for
polynomials, there exist polynomials q and r with deg(r) < deg(m) such that
m = qp+ r. But then m(T ) = q(T )p(T )+ r(T ). But m(T ) = 0 by definition of
the minimal polynomial, and p(T ) = 0 by the Cayley-Hamilton theorem, whence
0 = 0+r(T ), so r(T ) = 0, However, deg(r) < deg(m), whence r ≡ 0 (otherwise
this would contradict the definition of m as the minimal polynomial). But then
m = qp+ r = qp+ 0 = qp, so p divides m)

(d) TRUE
(If F = R, then the real spectral theorem applies, and if F = C, then T ∗T =

TT = TT ∗, so T is normal and the complex spectral theorem applies)

(e) FALSE
In general, the statement is false, and the reason is that we didn’t specify

whether the vector spacee is over R or over C.

(In the case F = C, the answer is FALSE , because for example if V = C,
then T (v) = iv has only one eigenvalue, λ = i, which is not real.

However, in the case F = R, the answer is TRUE , See Theorem 8.2 in section
8 of Axler’s paper, or Theorem 5.26 on page 92 of the book.)
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(f) FALSE
If you take the statement as it is, it doesn’t make sense. It should be ‘general-

ized eigenspaces of a (given) linear operator T ’

Also, if you correct that statement, then it is FALSE if F = R, but TRUE
if F = C.

(For the case F = C, this is just theorem 8.23 in the book. For the case F = R,
consider V = R2, and let T ∈ L(V ) be defined by T (x, y) = (y,−x). Then

M(T ) =

[
0 −1
1 0

]
, which has no (real) eigenvalues, and hence each eigenspace

of T is just {0}. And hence the direct sum of the generalized eigenspaces of T is
just {0}, which is not equal to V = R2)
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EXERCISE 4

Since S is nilpotent, there exists m such that Sm = 0, and since T is nilpotent, there
exists n such that Tn = 0.

Now, because TS = ST , the binomial formula applies, that is, for every k:

(S + T )k =

k∑
j=0

ajS
jT k−j

(technically aj = j!k!
(j−k)! , but we won’t need that here)

Now take k = m+ n , then:

(S + T )m+n =

m+n∑
j=0

ajS
jTm+n−j

=

m∑
j=0

ajS
jTm+n−j +

n∑
j=m+1

SjTm+n−j

However, if j ≤ m, then m+ n− j ≥ m+ n−m = n, so m = n− j = n+ l, where
l ≥ 0, and so:

Tm+n−j = Tn+l = TnT l = 0T l = 0

In particular SjTm+n−j = Sj0 = 0, hence all the terms in the first sum are 0.

On the other hand, if j ≥ m+ 1, then j = m+ l, where l ≥ 0, and so:

Sj = Sm+l = SmSl = 0Sl = 0

In particular, SjTm+n−j = 0Tm+n−j = 0, hence all the terms in the second sum are 0.

Combining this, we get:

(S + T )m+n = 0

Hence S + T is nilpotent.
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EXERCISE 5

(⇐) Suppose x ∈ Nul(P ) and y ∈ Ran(P ). We want to show that < x, y >= 0.

Since x ∈ Nul(P ), P (x) = 0, and since y ∈ Ran(P ), y = P (z) for some z ∈ V .

But then:

< x, y > = < x,P (z) > = < P ∗x, z > = < P (x), z >= < 0, z > = 0

Where in the third equality, we used the fact that P ∗ = P , since P is self-adjoint.

Hence < x, y >= 0, and we’re done.

(⇒) Suppose Nul(P ) ⊥ Ran(P ). We want to show P ∗ = P . That is, for every x and
y in V , we want to show that:

< Px, y > = < x,Py >

Notice that you can write:

< Px, y > = < Px, Py + (y − Py) >=< Px, Py > + < Px, y − Py >
However, notice that Px ∈ Ran(P ) and P (y−Py) = Py−P 2y = Py−Py = 0, so

y − Py ∈ Nul(P ).

Because Nul(P ) ⊥ Ran(P ) by assumption, we get that < Px, y − Py > = 0.
Therefore:

< Px, y >=< Px, Py >

But now, we can write:

< Px, y > = < Px, Py > = < x+ (Px− x), Py > = < x,Py > + < Px− x, Py >
But Py ∈ Ran(P ) and P (Px−x) = P 2x−Px = Px−Py = 0, so Px−x ∈ Nul(P ).

Because Nul(P ) ⊥ Ran(P ) by assumption, we get that < Px − x, Py >= 0, and
hence:

< Px, y > = < x,Py >

as we wanted to show �
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EXERCISE 6

Note: Remember how to calculate the matrix of a linear transformation with respect to
a basis (v1, · · · , vn)! For each basis vector vi, calculate T (vi) and express your result as a
linear combination of all your basis vectors (v1, · · · , vn).

Here:

T

[
1 0
0 0

]
=

[
1 2
3 4

] [
1 0
0 0

]
=

[
1 0
3 0

]
= 1

[
1 0
0 0

]
+ 0

[
0 1
0 0

]
+ 3

[
0 0
1 0

]
+ 0

[
0 0
0 1

]
Hence the first column ofM(T ) is: 

1
0
3
0


Next:

T

[
0 1
0 0

]
=

[
1 2
3 4

] [
0 1
0 0

]
=

[
0 1
0 3

]
= 0

[
1 0
0 0

]
+ 1

[
0 1
0 0

]
+ 0

[
0 0
1 0

]
+ 3

[
0 0
0 1

]
Hence the second column ofM(T ) is: 

0
1
0
3


Next:

T

[
0 0
1 0

]
=

[
1 2
3 4

] [
0 0
1 0

]
=

[
2 0
4 0

]
= 2

[
1 0
0 0

]
+ 0

[
0 1
0 0

]
+ 4

[
0 0
1 0

]
+ 0

[
0 0
0 1

]
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Hence the third column ofM(T ) is: 
2
0
4
0


Finally:

T

[
0 0
0 1

]
=

[
1 2
3 4

] [
0 0
0 1

]
=

[
0 2
0 4

]
= 0

[
1 0
0 0

]
+ 2

[
0 1
0 0

]
+ 0

[
0 0
1 0

]
+ 4

[
0 0
0 1

]
Hence the fourth column ofM(T ) is: 

0
2
0
4


Putting everything together, we get:

M(T ) =


1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4


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EXERCISE 7

(⇒) Let (v1, · · · , vn) be a basis for V .

By definition, we know that D(vi) = λivi for some λi, where i = 1, · · ·n.

Now fix i and define Ki ∈ L(V ) by:

Ki(v1) = 0

...

Ki(vi−1) = 0

Ki(vi) = vi

Ki(vi+1) = 0

...

Ki(vn) = 0

That is, Ki(vj) = 0 for j 6= i, and Ki(vi) = vi .

Note that Ki exists by the linear extension lemma.

More explicitly (we’ll need this below), if v ∈ V , then there exist a1, · · · , an such that
v = a1v1 + · · ·+ anvn (because (v1, · · · , vn) is a basis for V ), and then:

Ki(v) = Ki(a1v1 + · · ·+ anvn)

= a1Ki(v1) + · · ·+ aiKi(vi) + · · ·+ anKi(vn)

= a10 + · · ·+ aivi + · · ·+ an0

= aivi

That is, Ki(v) = aivi , where v = a1v1 + · · ·+ anvn

Now we only need to show 3 things:

(1) D =
∑n

i=1 λiKi

Proof: Let v ∈ V , then v = a1v1 + · · ·+ anvn for scalars i = 1, · · · , n.

But then:
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D(v) = D(a1v1 + · · ·+ anvn)

= a1D(v1) + · · ·+ anD(vn)

= a1λ1v1 + · · ·+ anλnvn

= λ1a1v1 + · · ·+ λnanvn

= λ1K1(v) + · · ·+ λnKn(v)

=

(
n∑

i=1

λiKi

)
v

Since v was arbitrary, we get that D =
∑n

i=1 λiKi

(2) K2
i = Ki

Proof: Let v ∈ V , then v = a1v1 + · · ·+ anvn for scalars a1, · · · , an.

But then:

K2
i (v) = Ki(Kiv)

= Ki(Ki(a1v1 + · · ·+ anvn))

= Ki(a1Ki(v1) + · · ·+Ki(vi) + · · ·+ anKi(vn))

= Ki(a10 + · · ·+ aivi + · · ·+ an0)

= Ki(aivi)

= aiKi(vi)

= aivi

= Ki(v)

Since v was arbitrary, we get K2
i = Ki for all i

(3) If i 6= j, then KiKj = 0

Proof: Let v ∈ V , then v = a1v1 + · · ·+ anvn for scalars a1, · · · , an.

But then:
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KiKj(v) = Ki(Kjv)

= Ki(Kj(a1v1 + · · ·+ anvn))

= Ki(a1Kj(v1) + · · ·+Kj(vj) + · · ·+ anKj(vn))

= Ki(a10 + · · ·+ ajvj + · · ·+ an0)

= Ki(ajvj)

= ajKi(vj)

= 0

(where in the last line we used j 6= i)

Hence KiKj = 0, since v was arbirary. �

(⇐) For this, we use the result of exercise 11 in chapter 8 (which was on your home-
work), namely if T ∈ L(V ), then:

V = Ran(Tn)⊕Nul(Tn)

Here with T = K1, we get:

V = Ran(Kn
1 )⊕Nul(Kn

1 )

However, because K2
1 = K1, we have Kn

1 = K1 (use induction), and hence:

V = Ran(K1)⊕Nul(K1)

Now let U1 = Nul(K1). First of all, U1 is invariant under K2, because if u1 ∈ U1,
then K1(K2u1) = (K1K2)u1 = 0u1 = 0, so K2u1 ∈ Nul(K1) = U1. Hence, applying
the result of exercise 11 in chapter 8 to V = U1 and T = K ′2 := (K2) |U1

, we get:

Nul(K1) = U1 = Ran(K ′2)⊕Nul(K ′2) (?)

Claim: Ran(K ′2) = Ran(K2)

Proof: Suppose v ∈ Ran(K2), then v = K2(v
′) for some v′ ∈ V . But then since

V = Ran(K1)⊕Nul(K1), we get v′ = v1 + v2, where v1 ∈ Ran(K1), so v1 = K1(u1)
and v2 ∈ Nul(K1) = U1. But then

K2(v
′) = K2(v1)+K2(v2) = K2(K1u1)+K2(v2) = 0u1+K2(v2) = K2(v2) = K ′2v2

That is: v = K2(v
′) = K ′2(v2) ∈ Ran(K ′2)

Conversely, if v ∈ Ran(K ′2), then v = K ′2(v
′) for some v′ ∈ U1 ⊆ V , so v =

K ′2(v
′) = K2(v

′) ∈ Ran(K2).
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Claim: Nul(K ′2) = Nul(K1) ∩Nul(K2)

Proof: Suppose v ∈ Nul(K1) ∩Nul(K2), then v ∈ Nul(K1) = U1, and so K ′2(v) =
K2(v) = 0, since v ∈ Nul(K2), and so v ∈ Nul(K ′2).

Conversely, suppose v ∈ Nul(K ′2). Then v ∈ U1 = Nul(K1) (by definition of K ′2)),
and henceK2v = K ′2v = 0, so v ∈ Nul(K2) as well, and hence v ∈ Nul(K1)∩Nul(K2)

Combining the two claims and (?), we get:

U1 = Ran(K2)⊕Nul(K1) ∩Nul(K2)

So if you let U2 = Nul(K1) ∩Nul(K2), you get:

U1 = Ran(K2)⊕ U2

And so:

V = Ran(K1)⊕Ran(K2)⊕ U2

Now in general, you can prove by induction on i3 that ifUi = Nul(K1)∩· · ·∩Nul(Ki),
then:

Ui = Ran(Ki)⊕ Ui+1

And also by induction:

V = Ran(K1)⊕Ran(K2)⊕Ran(Ki)⊕ Ui

And in particular, with i = n, we get:

V = Ran(K1)⊕Ran(K2)⊕ · · · ⊕Ran(Kn)⊕ Un

Where Un = Nul(K1) ∩ · · · ∩Nul(Kn).
That is:

V = Ran(K1)⊕ · · · ⊕Ran(Kn)⊕ (Nul(K1) ∩ · · · ∩Nul(Kn))

Note: If any of the above sets are 0, just delete them from the list.

Let (vi1, · · · , viki
) be a basis forRan(Ki) (where ki = dim(Ran(Ki))) and (w1, · · · , wp)

be a basis for Nul(K1) ∩ · · · ∩Nul(Kn).

Then because V is a direct sum of all the above spaces, we have that the whole list
(v11 , · · · , v1k1

, · · · , vn1 , · · · , vnkn
), w1, · · · , wp) is a basis for V .

To show D is diagonal, we need (as usual) to calculate D(vkj ) and D(wi):

3do it!
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First of all:

D(vkj ) = (

m∑
i=1

λlKi)(v
k
j ) =

m∑
i=1

λiKi(v
k
j )

Now vkj ∈ Ran(Kk), so vkj = Kk(u
k
j ) for some ukj ), and hence:

Ki(v
k
j ) = KiKk(u

k
j ), which is 0 if i 6= k, and if i = k, this isK2

k(u
k
j ) = Kk(u

k
j ) = vkj

In other words, we get:

D(vkj ) = λkv
k
j

Finally, for the wi, notice that for all j, Kjwi = 0 (because wi is in the Nullspace of all
the Ki), and so D(wi) = 0 = 0wi.

From this it follows that D is diagonal �


