MATH 110 - SOLUTIONS TO THE PRACTICE FINAL

PEYAM TABRIZIAN

Note: There might be some mistakes and typos. Please let me know if you find any!

EXERCISE 1

Theorem: [Cauchy-Schwarz inequality]

Let V be a vector space over \mathbb{F} with inner product <,>, and define $||u|| = \sqrt{\langle u, u \rangle}$.

Then for all u and v in V:

$$|\langle u, v \rangle| \leq ||u|| ||v||$$

Moreover, equality holds if and only if u is a multiple of v or v is a multiple of u

Proof:¹

Fix u, v in V.

First of all, the result holds for v = 0, because:

 $< u, v > = < u, 0 > = 0 \le ||u|| ||v||$

And also if v = 0, then v = 0u, so v is a multiple of u

Hence, from now on, for the rest of the proof, we may assume $v \neq 0$. Now consider $\boxed{\langle u - av, u - av \rangle}$, where $a \in \mathbb{F}$ is to be selected later.

On the one hand, by the nonnegativity axiom of <,>, we have:

$$\langle u - av, u - av \rangle \geq 0$$
 (*)

On the other hand, expanding $\langle u - av, u - av \rangle$ out, we get:

Date: Monday, April 29th, 2013.

¹The proof here is different from the one given in the book, but is equally valid. Feel free to memorize either one of them

$$< u - av, u - av > = < u, u > + < u, -av > + < -av, u > + < -av, -av >$$

= < u, u > -\overline{a} < u, v > -a < v, u > +a\overline{a} < v, v >
= $||u||^2 - \overline{a} < u, v > -a \overline{< u, v >} + |a|^2 ||v||^2$

Combining this with (\star) , we get:

$$||u||^{2} + \overline{a} < u, v > +a < v, u > +|a|^{2} ||v||^{2} \ge 0 \quad (\star\star)$$

Now let $a = \frac{\langle u, v \rangle}{\langle v, v \rangle} = \frac{\langle u, v \rangle}{\|v\|^2}^2$ (which is well-defined since $v \neq 0$)

In particular, we get:

$$\overline{a} < u, v >= \frac{\overline{\langle u, v \rangle} \langle u, v \rangle}{\left\| v \right\|^2} = \frac{\left| \langle u, v \rangle \right|^2}{\left\| v \right\|^2}$$

and

$$a\overline{\langle u,v\rangle} = \frac{\langle u,v\rangle\overline{\langle u,v\rangle}}{\left\|v\right\|^{2}} = \frac{\left|\langle u,v\rangle\right|^{2}}{\left\|v\right\|^{2}}$$

and

$$a|^{2} ||v||^{2} = \left(\frac{|\langle u, v \rangle|}{||v||^{2}}\right)^{2} ||v||^{2} = \frac{|\langle u, v \rangle|^{2}}{||v||^{2}}$$

Therefore, $(\star\star)$ becomes:

$$\|u\|^{2} - \frac{|\langle u, v \rangle|^{2}}{\|v\|^{2}} - \frac{|\langle u, v \rangle|^{2}}{\left\|v\right\|^{2}} + \frac{|\langle u, v \rangle|^{2}}{\left\|v\right\|^{2}} \ge 0$$

That is:

$$||u||^2 - \frac{|\langle u, v \rangle|^2}{||v||^2} \ge 0 \quad (\star \star \star)$$

Solving for $\langle u, v \rangle$, we get:

$$|\langle u, v \rangle|^2 \le ||u||^2 ||v||^2$$

And taking square roots (given that all the terms are nonnegative), we have:

$$|\langle u, v \rangle| \le ||u|| \, ||v||$$

Which is the Cauchy-Schwarz inequality!

²The idea is that we want to turn $a < v, u > \text{into } \frac{| \le u, v > |^2}{\| v \|^2}$

Finally, if equality holds in the Cauchy-Schwarz inequality, that is, if $|\langle u, v \rangle| = ||u|| ||v||$ then working our way backwards, then $(\star \star \star)$ becomes an equality, and so $(\star \star)$ becomes an equality becomes equalities, and in particular, (\star) becomes an equality, that is:

$$\langle u - av, u - av \rangle = 0$$

And hence, by the positivity axiom, u - av = 0, that is, u = av, so u is a multiple of v.

Conversely, if u = av for some $a \in \mathbb{F}$, then:

 $| < u, v > | = | < av, v > | = |a < v, v > | |a| | < v, v > | = |a| ||v||^{2} = |a| ||v|| ||v|| = ||av|| ||v|| = ||u|| ||v||$

So equality holds in the Cauchy-Schwarz inequality. Similarly if v=au for some $a\in\mathbb{F}$

EXERCISE 2

Let (v_1, \dots, v_m) be a basis for Nul(T), and extend it to a basis $(v_1, \dots, v_m, v_{m+1}, \dots, v_n)$ of V.

<u>Claim</u>: $(T(v_{m+1}), \dots, T(v_n))$ is a basis of Ran(T).

<u>Proof:</u> We need to show that the set spans Ran(T) and is linearly independent

Span:

First of all, each $T(v_{m+1}), \cdots T(v_n)$ is in Ran(T) (by definition of Ran(T)), and hence, because Ran(T) is a subspace of W,

$$Span(T(v_{m+1}), \cdots, T(v_n)) \subseteq Ran(T)$$

Conversely, let $w \in Ran(T)$. Then w = T(v) for some v in V.

But then, since (v_1, \dots, v_n) is a basis for V, we have $v = a_1v_1 + \dots + a_nv_n$ for scalars a_1, \dots, a_n .

But then:

$$\begin{aligned} T(v) &= T(a_1v_1 + \dots + a_nv_n) \\ &= a_1T(v_1) + \dots + a_mT(v_m) + a_{m+1}T(v_{m+1}) + \dots + a_nT(v_n) \\ &= a_10 + \dots + a_m0 + a_{m+1}T(v_{m+1}) + \dots + a_nT(v_n) \\ &= a_{m+1}T(v_{m+1}) + \dots + a_nT(v_n) \\ &\in Span(T(v_{m+1}), \dots, T(v_n)) \end{aligned}$$

Hence, $w = T(v) \in Span(T(v_{m+1}), \cdots, T(v_n)).$

Hence, since w was arbitrary, we get:

$$Ran(T) \subseteq Span(T(v_{m+1}), \cdots, T(v_n))$$

And therefore:

$$Span(T(v_{m+1}), \cdots, T(v_n)) = Ran(T)$$

So $T(v_{m+1}), \cdots, T(v_n)$ spans Ran(T).

Linear independence:

Suppose $a_{m+1}T(v_{m+1}) + \dots + a_nT(v_n) = 0.$

Then $T(a_{m+1}v_{m+1} + \dots + a_nv_n) = 0$

Hence $a_{m+1}v_{m+1} + \cdots + a_nv_n \in Nul(T)$

Hence $a_{m+1}v_{m+1} + \cdots + a_nv_n = a_1v_1 + \cdots + a_mv_m$ for scalars a_1, \cdots, a_m , because (v_1, \cdots, v_m) is a basis for Nul(T).

Hence $-a_1v_1 - \cdots - a_mv_m + a_{m+1}v_{m+1} + \cdots + a_nv_n = 0.$

However, (v_1, \dots, v_n) is linearly independent, hence $-a_1 = \dots = -a_m = a_{m+1} = \dots = a_n = 0$

Hence $a_{m+1} = \cdots = a_n = 0$, which is what we wanted to show.

Hence $(T(v_{m+1}), \dots, T(v_n))$ is a basis for Ran(T), and hence dim(Ran(T)) = n - m

But then, it follows that:

$$dim(V) = n = m + (n - m) = dim(Nul(T)) + dim(Ran(T))$$

EXERCISE 3

Note: The explanations are optional, and are here to convince you why an answer is true or false.

(a) **VERY FALSE !!!** Remember that *Prop*1.9 **ONLY** works for **TWO** subspaces!

(Let $V = \mathbb{R}^2$, $U_1 = Span\{(1,0)\}$ (the *x*-axis), $U_2 = Span\{(0,1)\}$ (the *y*-axis), and $U_3 = Span\{(1,1)\}$ (the line y = x). Notice that $V \neq U_1 \oplus U_2 \oplus U_3$ because (0,0) can be written in two different ways as sums of vectors in U_1, U_2, U_3 , namely (0,0) = (1,0) + (0,-1) + (0,0), but also (0,0) = (1,0) + (0,1) + (-1,-1). This violates the definition of direct sums on page 15)

(b) **FALSE**

(Let $V = \mathbb{R}^3$, and let $T \in \mathcal{L}(V)$ be the linear transformation whose matrix is $\mathcal{M}(T) = A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$. Then (1,0) and (0,1) are eigenvectors of T, but (1,1) = (1,0) + (0,1) isn't)

(c) **TRUE**

(See Theorem 8.35. For a direct proof: Let m be the minimal polynomial of T and p be the characteristic polynomial. Then by the division algorithm for polynomials, there exist polynomials q and r with deg(r) < deg(m) such that m = qp + r. But then m(T) = q(T)p(T) + r(T). But m(T) = 0 by definition of the minimal polynomial, and p(T) = 0 by the Cayley-Hamilton theorem, whence 0 = 0 + r(T), so r(T) = 0, However, deg(r) < deg(m), whence $r \equiv 0$ (otherwise this would contradict the definition of m as the minimal polynomial). But then m = qp + r = qp + 0 = qp, so p divides m)

(d) **TRUE**

(If $\mathbb{F} = \mathbb{R}$, then the real spectral theorem applies, and if $\mathbb{F} = \mathbb{C}$, then $T^*T = TT = TT^*$, so T is normal and the complex spectral theorem applies)

(e) **FALSE**

In general, the statement is false, and the reason is that we didn't specify whether the vector space is over \mathbb{R} or over \mathbb{C} .

(In the case $\mathbb{F} = \mathbb{C}$, the answer is **FALSE**, because for example if $V = \mathbb{C}$, then T(v) = iv has only one eigenvalue, $\lambda = i$, which is not real.

However, in the case $\mathbb{F} = \mathbb{R}$, the answer is **TRUE**, See Theorem 8.2 in section 8 of Axler's paper, or Theorem 5.26 on page 92 of the book.)

(f) **FALSE**

If you take the statement as it is, it doesn't make sense. It should be 'generalized eigenspaces of a (given) linear operator T'

Also, if you correct that statement, then it is **FALSE** if $\mathbb{F} = \mathbb{R}$, but **TRUE** if $\mathbb{F} = \mathbb{C}$.

(For the case $\mathbb{F} = \mathbb{C}$, this is just theorem 8.23 in the book. For the case $\mathbb{F} = \mathbb{R}$, consider $V = \mathbb{R}^2$, and let $T \in \mathcal{L}(V)$ be defined by T(x, y) = (y, -x). Then $\mathcal{M}(T) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, which has no (real) eigenvalues, and hence each eigenspace of T is just $\{0\}$. And hence the direct sum of the generalized eigenspaces of T is just $\{0\}$, which is not equal to $V = \mathbb{R}^2$)

EXERCISE 4

Since S is nilpotent, there exists m such that $S^m = 0$, and since T is nilpotent, there exists n such that $T^n = 0$.

Now, because TS = ST, the binomial formula applies, that is, for every k:

$$(S+T)^k = \sum_{j=0}^k a_j S^j T^{k-j}$$

(technically $a_j = \frac{j!k!}{(j-k)!}$, but we won't need that here) Now take k = m + n then:

Now take
$$\kappa = m + n$$
, then:

$$(S+T)^{m+n} = \sum_{j=0}^{m+n} a_j S^j T^{m+n-j}$$
$$= \sum_{j=0}^m a_j S^j T^{m+n-j} + \sum_{j=m+1}^n S^j T^{m+n-j}$$

However, if $j \le m$, then $m + n - j \ge m + n - m = n$, so m = n - j = n + l, where $l \ge 0$, and so:

$$T^{m+n-j} = T^{n+l} = T^n T^l = 0 T^l = 0$$

In particular $S^{j}T^{m+n-j} = S^{j}0 = 0$, hence all the terms in the first sum are 0.

On the other hand, if $j \ge m + 1$, then j = m + l, where $l \ge 0$, and so:

$$S^{j} = S^{m+l} = S^{m}S^{l} = 0S^{l} = 0$$

In particular, $S^{j}T^{m+n-j} = 0T^{m+n-j} = 0$, hence all the terms in the second sum are 0.

Combining this, we get:

$$(S+T)^{m+n} = 0$$

Hence S + T is nilpotent.

Exercise 5

$$(\Leftarrow) \text{ Suppose } x \in Nul(P) \text{ and } y \in Ran(P). \text{ We want to show that } < x, y >= 0.$$

Since
$$x \in Nul(P)$$
, $P(x) = 0$, and since $y \in Ran(P)$, $y = P(z)$ for some $z \in V$.

But then:

$$\langle x, y \rangle = \langle x, P(z) \rangle = \langle P^*x, z \rangle = \langle P(x), z \rangle = \langle 0, z \rangle = 0$$

Where in the third equality, we used the fact that $P^* = P$, since P is self-adjoint. Hence $\langle x, y \rangle = 0$, and we're done.

 (\Rightarrow) Suppose $Nul(P) \perp Ran(P)$. We want to show $P^* = P$. That is, for every x and y in V, we want to show that:

$$\langle Px, y \rangle = \langle x, Py \rangle$$

Notice that you can write:

< Px, y > = < Px, Py + (y - Py) > = < Px, Py > + < Px, y - Py >

However, notice that $Px \in Ran(P)$ and $P(y - Py) = Py - P^2y = Py - Py = 0$, so $y - Py \in Nul(P)$.

Because $Nul(P) \perp Ran(P)$ by assumption, we get that $\langle Px, y - Py \rangle = 0$. Therefore:

$$\langle Px, y \rangle = \langle Px, Py \rangle$$

But now, we can write:

$$< Px, y > = < Px, Py > = < x + (Px - x), Py > = < x, Py > + < Px - x, Py >$$
 But $Py \in Ran(P)$ and $P(Px - x) = P^2x - Px = Px - Py = 0$, so $Px - x \in Nul(P)$.

Because $Nul(P) \perp Ran(P)$ by assumption, we get that $\langle Px - x, Py \rangle = 0$, and hence:

$$\langle Px, y \rangle = \langle x, Py \rangle$$

as we wanted to show

EXERCISE 6

Note: Remember how to calculate the matrix of a linear transformation with respect to a basis $(v_1, \dots, v_n)!$ For each basis vector v_i , calculate $T(v_i)$ and express your result as a linear combination of *all* your basis vectors (v_1, \dots, v_n) .

Here:

$$T \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix}$$
$$= \mathbf{1} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \mathbf{0} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \mathbf{3} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \mathbf{0} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Hence the first column of $\mathcal{M}(T)$ is:

$$\begin{bmatrix} 1\\0\\3\\0\end{bmatrix}$$

Next:

$$T\begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1\\ 0 & 3 \end{bmatrix}$$
$$= \mathbf{0} \begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix} + \mathbf{1} \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix} + \mathbf{0} \begin{bmatrix} 0 & 0\\ 1 & 0 \end{bmatrix} + \mathbf{3} \begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix}$$

Hence the second column of $\mathcal{M}(T)$ is:

$$\begin{bmatrix} 0\\1\\0\\3\end{bmatrix}$$

Next:

$$T \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 0 \\ 4 & 0 \end{bmatrix}$$
$$= \mathbf{2} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \mathbf{0} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \mathbf{4} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \mathbf{0} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

10

 $\begin{bmatrix} 2\\0\\4\\0\end{bmatrix}$

Hence the third column of $\mathcal{M}(T)$ is:

Finally:

$$T\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix} = \begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}$$
$$= \begin{bmatrix}0 & 2\\0 & 4\end{bmatrix}$$
$$= \mathbf{0}\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix} + \mathbf{2}\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix} + \mathbf{0}\begin{bmatrix}0 & 0\\1 & 0\end{bmatrix} + \mathbf{4}\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}$$

Hence the fourth column of $\mathcal{M}(T)$ is:

$$\begin{bmatrix} 0\\2\\0\\4 \end{bmatrix}$$

Putting everything together, we get:

$$\mathcal{M}(T) = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 3 & 0 & 4 & 0 \\ 0 & 3 & 0 & 4 \end{bmatrix}$$

EXERCISE 7

 (\Rightarrow) Let (v_1, \cdots, v_n) be a basis for V.

By definition, we know that $D(v_i) = \lambda_i v_i$ for some λ_i , where $i = 1, \dots n$.

Now fix i and define $K_i \in \mathcal{L}(V)$ by:

$$K_i(v_1) = 0$$

$$\vdots$$

$$K_i(v_{i-1}) = 0$$

$$K_i(v_i) = v_i$$

$$K_i(v_{i+1}) = 0$$

$$\vdots$$

$$K_i(v_n) = 0$$

That is,
$$K_i(v_j) = 0$$
 for $j \neq i$, and $K_i(v_i) = v_i$.

Note that K_i exists by the linear extension lemma.

More explicitly (we'll need this below), if $v \in V$, then there exist a_1, \dots, a_n such that $v = a_1v_1 + \dots + a_nv_n$ (because (v_1, \dots, v_n) is a basis for V), and then:

$$K_i(v) = K_i(a_1v_1 + \dots + a_nv_n)$$

= $a_1K_i(v_1) + \dots + a_iK_i(v_i) + \dots + a_nK_i(v_n)$
= $a_10 + \dots + a_iv_i + \dots + a_n0$
= a_iv_i

That is, $K_i(v) = a_i v_i$, where $v = a_1 v_1 + \dots + a_n v_n$

Now we only need to show 3 things:

(1) $D = \sum_{i=1}^{n} \lambda_i K_i$

<u>Proof:</u> Let $v \in V$, then $v = a_1v_1 + \cdots + a_nv_n$ for scalars $i = 1, \cdots, n$.

But then:

$$D(v) = D(a_1v_1 + \dots + a_nv_n)$$

= $a_1D(v_1) + \dots + a_nD(v_n)$
= $a_1\lambda_1v_1 + \dots + a_n\lambda_nv_n$
= $\lambda_1a_1v_1 + \dots + \lambda_na_nv_n$
= $\lambda_1K_1(v) + \dots + \lambda_nK_n(v)$
= $\left(\sum_{i=1}^n \lambda_iK_i\right)v$

Since v was arbitrary, we get that $D = \sum_{i=1}^n \lambda_i K_i$

(2) $K_i^2 = K_i$

<u>Proof:</u> Let $v \in V$, then $v = a_1v_1 + \cdots + a_nv_n$ for scalars a_1, \cdots, a_n .

But then:

$$\begin{aligned} K_i^2(v) &= K_i(K_iv) \\ &= K_i(K_i(a_1v_1 + \dots + a_nv_n)) \\ &= K_i(a_1K_i(v_1) + \dots + K_i(v_i) + \dots + a_nK_i(v_n)) \\ &= K_i(a_10 + \dots + a_iv_i + \dots + a_n0) \\ &= K_i(a_iv_i) \\ &= a_iK_i(v_i) \\ &= a_iv_i \\ &= K_i(v) \end{aligned}$$

Since v was arbitrary, we get $K_i^2 = K_i \mbox{ for all } i$

(3) If $i \neq j$, then $K_i K_j = 0$

<u>Proof:</u> Let $v \in V$, then $v = a_1v_1 + \cdots + a_nv_n$ for scalars a_1, \cdots, a_n .

But then:

$$K_{i}K_{j}(v) = K_{i}(K_{j}v)$$

= $K_{i}(K_{j}(a_{1}v_{1} + \dots + a_{n}v_{n}))$
= $K_{i}(a_{1}K_{j}(v_{1}) + \dots + K_{j}(v_{j}) + \dots + a_{n}K_{j}(v_{n}))$
= $K_{i}(a_{1}0 + \dots + a_{j}v_{j} + \dots + a_{n}0)$
= $K_{i}(a_{j}v_{j})$
= $a_{j}K_{i}(v_{j})$
= 0

(where in the last line we used $j \neq i$)

Hence
$$K_i K_j = 0$$
, since v was arbitrary.

 (\Leftarrow) For this, we use the result of exercise 11 in chapter 8 (which was on your home-work), namely if $T \in \mathcal{L}(V)$, then:

$$V = Ran(T^n) \oplus Nul(T^n)$$

Here with $T = K_1$, we get:

$$V = Ran(K_1^n) \oplus Nul(K_1^n)$$

However, because $K_1^2 = K_1$, we have $K_1^n = K_1$ (use induction), and hence:

$$V = Ran(K_1) \oplus Nul(K_1)$$

Now let $U_1 = Nul(K_1)$. First of all, U_1 is invariant under K_2 , because if $u_1 \in U_1$, then $K_1(K_2u_1) = (K_1K_2)u_1 = 0u_1 = 0$, so $K_2u_1 \in Nul(K_1) = U_1$. Hence, applying the result of exercise 11 in chapter 8 to $V = U_1$ and $T = K'_2 := (K_2)|_{U_1}$, we get:

$$Nul(K_1) = U_1 = Ran(K'_2) \oplus Nul(K'_2) \tag{(\star)}$$

<u>Claim:</u> $Ran(K'_2) = Ran(K_2)$

<u>Proof:</u> Suppose $v \in Ran(K_2)$, then $v = K_2(v')$ for some $v' \in V$. But then since $V = Ran(K_1) \oplus Nul(K_1)$, we get $v' = v_1 + v_2$, where $v_1 \in Ran(K_1)$, so $v_1 = K_1(u_1)$ and $v_2 \in Nul(K_1) = U_1$. But then

$$K_2(v') = K_2(v_1) + K_2(v_2) = K_2(K_1u_1) + K_2(v_2) = 0u_1 + K_2(v_2) = K_2(v_2) = K'_2v_2$$

That is: $v = K_2(v') = K'_2(v_2) \in Ran(K'_2)$

Conversely, if $v \in Ran(K'_2)$, then $v = K'_2(v')$ for some $v' \in U_1 \subseteq V$, so $v = K'_2(v') = K_2(v') \in Ran(K_2)$.

<u>Claim</u>: $Nul(K'_2) = Nul(K_1) \cap Nul(K_2)$

<u>Proof:</u> Suppose $v \in Nul(K_1) \cap Nul(K_2)$, then $v \in Nul(K_1) = U_1$, and so $K'_2(v) = K_2(v) = 0$, since $v \in Nul(K_2)$, and so $v \in Nul(K'_2)$.

Conversely, suppose $v \in Nul(K'_2)$. Then $v \in U_1 = Nul(K_1)$ (by definition of K'_2)), and hence $K_2v = K'_2v = 0$, so $v \in Nul(K_2)$ as well, and hence $v \in Nul(K_1) \cap Nul(K_2)$

Combining the two claims and (\star) , we get:

 $U_1 = Ran(K_2) \oplus Nul(K_1) \cap Nul(K_2)$ So if you let $U_2 = Nul(K_1) \cap Nul(K_2)$, you get:

$$U_1 = Ran(K_2) \oplus U_2$$

And so:

$$V = Ran(K_1) \oplus Ran(K_2) \oplus U_2$$

Now in general, you can prove by induction on i^3 that if $U_i = Nul(K_1) \cap \cdots \cap Nul(K_i)$, then:

$$U_i = Ran(K_i) \oplus U_{i+1}$$

And also by induction:

$$V = Ran(K_1) \oplus Ran(K_2) \oplus Ran(K_i) \oplus U_i$$

And in particular, with i = n, we get:

$$V = Ran(K_1) \oplus Ran(K_2) \oplus \cdots \oplus Ran(K_n) \oplus U_n$$

Where $U_n = Nul(K_1) \cap \cdots \cap Nul(K_n)$. That is:

 $V = Ran(K_1) \oplus \cdots \oplus Ran(K_n) \oplus (Nul(K_1) \cap \cdots \cap Nul(K_n))$ Note: If any of the above sets are 0, just delete them from the list.

Let $(v_1^i, \dots, v_{k_i}^i)$ be a basis for $Ran(K_i)$ (where $k_i = dim(Ran(K_i))$) and (w_1, \dots, w_p) be a basis for $Nul(K_1) \cap \dots \cap Nul(K_n)$.

Then because V is a direct sum of all the above spaces, we have that the whole list $(v_1^1, \dots, v_{k_1}^1, \dots, v_1^n, \dots, v_{k_n}^n), w_1, \dots, w_p)$ is a basis for V.

To show D is diagonal, we need (as usual) to calculate $D(v_i^k)$ and $D(w_i)$:

³do it!

First of all:

$$D(v_j^k) = (\sum_{i=1}^m \lambda_l K_i)(v_j^k) = \sum_{i=1}^m \lambda_i K_i(v_j^k)$$

Now $v_j^k \in Ran(K_k)$, so $v_j^k = K_k(u_j^k)$ for some u_j^k), and hence: $K_i(v_j^k) = K_i K_k(u_j^k)$, which is 0 if $i \neq k$, and if i = k, this is $K_k^2(u_j^k) = K_k(u_j^k) = v_j^k$

In other words, we get:

$$D(v_j^k) = \lambda_k v_j^k$$

Finally, for the w_i , notice that for all j, $K_j w_i = 0$ (because w_i is in the Nullspace of all the K_i), and so $D(w_i) = 0 = 0w_i$.

From this it follows that D is diagonal

16