MATH 110 — SOLUTIONS TO THE PRACTICE FINAL

PEYAM TABRIZIAN

Note: There might be some mistakes and typos. Please let me know if you find any!

EXERCISE 1

Theorem: [Cauchy-Schwarz inequality]
Let V be a vector space over F with inner product <, >, and define ||u|| = /< u,u >.
Then for all wand v in V:

|<u, v > < lul [|v]

Moreover, equality holds if and only if u is a multiple of v or v is a multiple of u

Proof:!
Fix u,vin V.
First of all, the result holds for v = 0, because:
<u,v >=< 4,0 >=0 < |jul 0= |u| ||v]

And also if v = 0, then v = Qu, so v is a multiple of u

Hence, from now on, for the rest of the proof, we may assume v # 0.
Now consider | < u — av,u — av > | , where a € [F is to be selected later.

On the one hand, by the nonnegativity axiom of <, >, we have:

<u—av,u—av>> 0 (%)

On the other hand, expanding < v — av,u — av > out, we get:
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<u—av,u—av>= <uu>+<u—av >+ < —av,u >+ < —av, —av >
= <u,u>-a<u,v>-—-a<v,u>—+aa<v,v>

= |ul® —a<u,v>—-a<uv>+]|a|v]?
Combining this with (x), we get:

ul? 4@ <u,v>+a<v,u>+]a|v]> >0 (x%)

Now let|a = ZZ:}E = <”’;’|1|’2> % (which is well-defined since v # 0)

In particular, we get:

<u,v><u,v> < u, v >|?

a<u,v>=

lv]? lo]?
and
. <uv><uvs  |<uv>f
a< u,v > = 5 = 5
o] el
and

2
o 2 [ [<uwv > > [<uv>
lal* o= | ——5— | IvI"="—"5—
[0l

Therefore, (%*) becomes:

‘Mﬁ_Kuw>F_Ku@>V+Ku@>F>O
2 2 2 -
o] ol ol

That is:

2
[l —

2
[l

Solving for < u,v >, we get:

2 2 2
|< w0 > < lul” [|o]]

And taking square roots (given that all the terms are nonnegative), we have:

|<w, v > < luf [|v]
Which is the Cauchy-Schwarz inequality!

\<u,v>|2

2The idea is that we want to turn @ < v, u > into Tl
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Finally, if equality holds in the Cauchy-Schwarz inequality, that is, if |< u,v >| =
|||l ||v]|| then working our way backwards, then (x * x) becomes an equality, and so (*x)
becomes an equality becomes equalities, and in particular, (x) becomes an equality, that is:

<u—av,u—av>= 0

And hence, by the positivity axiom, u — av = 0, that is, . = av, so u is a multiple of v.

Conversely, if u = av for some a € F, then:

2
[<w,v>[=[<av,v > =a <v,0>|lal[<v,0>] =] [[o]” = |a] [[o] o]l = [lav] [lo]} = [[ull o]

So equality holds in the Cauchy-Schwarz inequality. Similarly if v = au for some
aclF (]
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EXERCISE 2

Let (v, -+ , v, ) be abasis for Nul(T'), and extend it to abasis (v1, -+ , UV, Umt1, " 5 Un)
of V.

Claim: (T'(vym41), -+, T(vy,)) is a basis of Ran(T).

Proof: We need to show that the set spans Ran(T) and is linearly independent

Span:

First of all, each T (vyp41), - T(vy,) is in Ran(T') (by definition of Ran(T)), and
hence, because Ran(T) is a subspace of W,

Span(T (Vm+1), -+ » T(vy)) C Ran(T)

Conversely, let w € Ran(T'). Then w = T'(v) for some v in V.

But then, since (v1, - - ,vy,) is a basis for V, we have v = aqv1 +- - - + a,,v,, for scalars
Ay, 5 0n.

But then:
Tw) =T(a1v1 + - + apvy)
= alT(Ul) + -+ am,T(Um) + am—i—lT(vm,—i-l) + -+ anT(Un)
=a10+ 4+ an0+ ami1T(Vms1) + -+ anT(v,) Because vy, -+, v, are in Nul(T)

= am1T(Vm+1) + - anT(vn)
€ Span(T(vimy1), -+, T(vn))

Hence, w = T'(v) € Span(T (vm+1), -+, T(vn)).
Hence, since w was arbitrary, we get:

Ran(T) € Span(T(vyi1), -+, T(v,))
And therefore:

Span(T (vm+1),- -+, T(vy)) = Ran(T)

So T'(vmt1), -, T'(vy) spans Ran(T).
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Linear independence:

Suppose am 1T (Vm+1) + -+ + anT'(vn) = 0.
Then T(am+1Vm+1 + -+ + anvp) =0

Hence a,,410m+1 + -+ + anv, € Nul(T)

Hence ay+1Vm+1 + -+ - + apvy, = aqvy + - - - + apvy, for scalars ay, - - -, ap,
because (v1, -+, Up,) is a basis for Nul(T).

Hence —ajv1 — -+ — amUm + @Gm+1Vm41 + -+ + apvy, = 0.

However, (vy,- -+ ,v,) is linearly independent, hence —ay = -+ = —a,, = Gpy1 =
e — an — 0

Hence a,,4+1 = - - - = a,, = 0, which is what we wanted to show.

Hence (T'(vim+1),--- T (vy)) is a basis for Ran(T), and hence dim(Ran(T))

n—m
But then, it follows that:

dim(V)=n=m+ (n —m) = dim(Nul(T)) + dim(Ran(T))
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EXERCISE 3

Note: The explanations are optional, and are here to convince you why an answer is
true or false.

(a) ’ VERY FALSE !!! ‘ Remember that Propl.9 ONLY works for TWO subspaces!

(Let V = R2, Uy = Span{(1,0)} (the z—axis), Uz = Span {(0,1)} (the
y—axis), and Uz = Span {(1,1)} (the line y = ). Notice that V # U; @
Us @ Us because (0, 0) can be written in two different ways as sums of vectors in
U1, Uy, Us, namely (0,0) = (1,0) + (0, —1) + (0, 0), but also (0,0) = (1,0) +
(0,1) 4+ (=1, —1). This violates the definition of direct sums on page 15)

(b)

(Let V. = R? and let T € L(V) be the linear transformation whose matrix

is M(T) = A = (1) (2)} Then (1,0) and (0,1) are eigenvectors of T, but
(1,1) = (1,0) + (0, 1) isn’t)

(©

(See Theorem 8.35. For a direct proof: Let m be the minimal polynomial
of T" and p be the characteristic polynomial. Then by the division algorithm for
polynomials, there exist polynomials ¢ and r with deg(r) < deg(m) such that
m = gp+r. Butthen m(T") = ¢(T)p(T') +r(T'). But m(T") = 0 by definition of
the minimal polynomial, and p(7") = 0 by the Cayley-Hamilton theorem, whence
0 = 0+r(T),sor(T) = 0, However, deg(r) < deg(m), whence r = 0 (otherwise
this would contradict the definition of m as the minimal polynomial). But then
m =qp+1r = qp+ 0 = gp, so p divides m)

@

(If F = R, then the real spectral theorem applies, and if F = C, then T*T =
TT =TT*, soT is normal and the complex spectral theorem applies)

@)

In general, the statement is false, and the reason is that we didn’t specify
whether the vector spacee is over R or over C.

(In the case F = C, the answer is | FALSE |, because for example if V = C,
then T'(v) = ¢v has only one eigenvalue, A = ¢, which is not real.

However, in the case F = R, the answer is| TRUE |, See Theorem 8.2 in section
8 of Axler’s paper, or Theorem 5.26 on page 92 of the book.)
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(f) [FALSE|

If you take the statement as it is, it doesn’t make sense. It should be ‘general-
ized eigenspaces of a (given) linear operator 1"

Also, if you correct that statement, then it is | FALSE |if F = R, but| TRUE

if F =C.

(For the case F = C, this is just theorem 8.23 in the book. For the case FF = R,
consider V. = R?, and let T € L(V) be defined by T'(z,y) = (y, —z). Then
M(T) = [? _01] , which has no (real) eigenvalues, and hence each eigenspace
of T is just {0}. And hence the direct sum of the generalized eigenspaces of T is
just {0}, which is not equal to V' = R?)
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EXERCISE 4

Since S is nilpotent, there exists m such that S™ = 0, and since 7 is nilpotent, there
exists n such that 7" = 0.

Now, because 7'S = ST, the binomial formula applies, that is, for every k:
(S+1)* Z a; $7T*

(technically a; = ( ),, but we won’t need that here)

Now take , then:
m—+n

(S+T)™ " =" a8

Jj=0
m n

= E aijTmHl*j + E Simtn—j
=0 j=m+1

However, if j < m,thenm+n—j>m+n—m=mn,som =n—7j =n+ [, where
[ > 0, and so:

T =t =TT = 0T = 0
In particular SYT™*"~J = §J0 = 0, hence all the terms in the first sum are 0.
On the other hand, if 5 > m + 1, then j = m + [, where [ > 0, and so:
i = gmtl — gmgl — 08! =0

In particular, S7T™+"—J = 0T™+"~J = 0, hence all the terms in the second sum are 0.

Combining this, we get:

(S+T)™*" =0
Hence S + T is nilpotent.
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EXERCISE 5

(«<=) Suppose z € Nul(P) and y € Ran(P). We want to show that < z,y >= 0.
Since x € Nul(P), P(z) = 0, and since y € Ran(P), y = P(z) for some z € V.

But then:

<z y>=<z,Pz)>=<P'z,z2>=<P(x),z>=<0,z>= 0
Where in the third equality, we used the fact that P* = P, since P is self-adjoint.
Hence < x,y >= 0, and we’re done.

(=) Suppose Nul(P) L Ran(P). We want to show P* = P. That is, for every x and
y in V, we want to show that:

< Pz,y>=<uz,Py>
Notice that you can write:

< Pz,y > =< Pz, Py+ (y — Py) >=< Pz, Py > + < Pz,y — Py >
However, notice that Px € Ran(P) and P(y — Py) = Py — P?y = Py — Py =0, so
y — Py € Nul(P).

Because Nul(P) L Ran(P) by assumption, we get that < Pz,y — Py >= 0.
Therefore:

< Px,y >=< Pz, Py >

But now, we can write:

< Pr,y>=<Px,Py>=<uz+ (Pr—x),Py>=<uz,Py>+ < Px—ux, Py >
But Py € Ran(P)and P(Px—x) = P?2—Px = Px—Py = 0,s0 Pr—x € Nul(P).

Because Nul(P) L Ran(P) by assumption, we get that < Pz — z, Py >= 0, and
hence:

< Pz,y> = <z,Py>
as we wanted to show |
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EXERCISE 6

Note: Remember how to calculate the matrix of a linear transformation with respect to

a basis (v1, -+ ,v,)! For each basis vector v;, calculate T'(v;) and express your result as a
linear combination of all your basis vectors (vy, -+, vp).
Here:
1 0 1 2111 0
o o= s 1o o

—_
o

|
s o
to o rolo ol 3 o rols

Hence the first column of M(T) is:

o w o

rlo o= |
b3

1 0] 0 1 0 0 0 0
oo o[ +1]o o/ +o[t o +3]0 1]

oo
IO HI

Hence the second column of M(T') is:

w o = o

Next:

: 411 o

o o rolo ol oy ool
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Hence the third column of M(T) is:

O = O N

Finally:

Hence the fourth column of M (T) is:

= o N O

Putting everything together, we get:

M(T) =

S W ok
w o = o
O = O N
- o NN O
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EXERCISE 7

(=) Let (vy,- -+ ,v,) be abasis for V.
By definition, we know that D(v;) = A\;v; for some \;, wherei = 1,---n.

Now fix 4 and define K; € L(V) by:

Ki(’Ul) = O
Ki(’l]ifl) = 0
K;(v;) = v;
Ki(vit1) =0
Ki(’l}n) = O

That s, | K;(v;) = 0|for j # ¢, and m

Note that K; exists by the linear extension lemma.

More explicitly (we’ll need this below), if v € V/, then there exist aq, - - - , a,, such that
v =ayv1 + -+ + ayv, (because (v1,- - ,v,) is a basis for V'), and then:

K;(v) = Ki(a1v1 + - - - + anvy)
= a1 l;(v1) + -+ @i Ki(vi) + - + an Ki(vn)
=a10+---+av;+ - +a,0

= Q;V;

That is, M, where v = a1v1 + -+ + an vy,

Now we only need to show 3 things:

(1) D=Y" | NK;
Proof: Letv € V, thenv = ayv1 + - - - + a,v, forscalars: =1,--- ,n.

But then:
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D(w) = D(ayvy + -+ + anvy)
=a1D(v1) + -+ anD(vy)
= a1 MU+ -+ ap AUy
= Aa1v1 + -+ Apanvy
=MKi(v)+ -+ N K (v)

Since v was arbitrary, we get that D = > | L, K;

2) K} =K,

Proof: Letv € V, then v = ayv1 + - - - + a,v, forscalars ay, - - - , ay,.

But then:

Since v was arbitrary, we get K2 = K, for all i

(3) Ifi # j, then K;K; =0

Proof: Letv € V, then v = ayv1 + - - - + a,v, forscalars aq, - - - , ay,.

But then:
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KzK(U) Kz( v)

Ki(Kj(aiv1 + -+ apvy))

Ki(a1Kj(v1) + ~~+Kj(vj) +anKj(vn))
Ki(a10+---+ajvj + -+ a,0)

K;(ajv;)

i Ki(vj)

Il
o 2

(where in the last line we used j # )

Hence K;K; = 0, since v was arbirary. O

(«<=) For this, we use the result of exercise 11 in chapter 8 (which was on your home-
work), namely if T € L(V), then:

V = Ran(T™) ® Nul(T")
Here with T' = K7, we get:
V = Ran(K7) ® Nul(KT)
However, because K 12 = K, we have K{" = K; (use induction), and hence:
V = Ran(K1) ® Nul(K;)
Now let U; = Nul(K7). First of all, U; is invariant under K, because if u; € Uy,
then Ky (Kauy) = (K1 K2)u; = 0uy = 0, so Kauy € Nul(K;) = U;. Hence, applying

the result of exercise 11 in chapter 8 to V' = Uy and T' = K3 := (K32) |, we get:

Nul(K,) = U; = Ran(K}) ® Nul(K3}) (%)

Claim: Ran(K}) = Ran(K>)

Proof: Suppose v € Ran(K3), then v = K3(v’) for some v/ € V. But then since
V = Ran(K,) & Nul(Ky), we get v’ = vy + v, where v; € Ran(K1), so vy = K (u)
and vy € Nul(K;) = Uy. But then

KQ('U/) = KQ(’Ul) +K2('U2) = Kg(Klul) +K2(’U2> = 0uy +K2(U2) = KQ(UQ) = Ké’l)g
Thatis: v = Ka(v') = K4 (v2) € Ran(K})

Conversely, if v € Ran(K}), then v = K,(v') for some v/ € Uy C V,s0ov =
K,(v') = K2(v') € Ran(K3).
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Claim: Nul(K}) = Nul(K1) N Nul(K3)

Proof: Suppose v € Nul(K;1) N Nul(K3), then v € Nul(K7) = Uy, and so Kj(v) =
Ky (v) =0, since v € Nul(K3), and so v € Nul(K3).

Conversely, suppose v € Nul(K%). Thenv € Uy = Nul(K7) (by definition of KJ)),
and hence Kyv = Kjv = 0,s0v € Nul(K3) as well, and hence v € Nul(K1)NNul(Ks)

Combining the two claims and (%), we get:

U, = Ran(Kg) &) Nul(Kl) n NUZ(KQ)
Soif you let Uy = Nul(K1) N Nul(K3), you get:

U1 = Ran(Kg) ® U2
And so:

V = Ran(K;) ® Ran(K3) ® U,

Now in general, you can prove by induction on i* that if U; = Nul(K1)N- - -NNul(K;),
then:

Ui = RCLTL(K7) ® Ui—i—l
And also by induction:

V = Rcm(Kl) ) Ran(Kg) D Ran(KZ) D (]Z

And in particular, with 7 = n, we get:

V = Ran(K1) ® Ran(K3) @ - -- & Ran(K,) ® U,

Where U,, = Nul(K1)N--- N Nul(Ky,).
That is:

V = Ran(Ky) @ -+ ® Ran(K,) ® (Nul(K1) N -+ N Nul(K,))
Note: If any of the above sets are 0, just delete them from the list.

Let (vf,-- - , v} ) beabasis for Ran(K;) (where k; = dim(Ran(K;)))and (w1, - - -, wp)
be a basis for Nul(K1) N--- N Nul(K,).

Then because V is a direct sum of all the above spaces, we have that the whole list
(v}, ,v,i17~-~ S VT U ) W, wy) is a basis for V.

To show D is diagonal, we need (as usual) to calculate D(vf) and D(w;):

3doit!
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First of all:

m

D) = O NE)(wh) =Y NK;(vh)
=1

i=1
Now v¥ € Ran(K}), so vk = Kj(u¥) for some %), and hence:

Ki(vF) = KK}, (u}), whichis 0if i # k, and if i = k, this is K7 (u}) = Kp(u}) = v}

In other words, we get:
D(vf) = /\kv;-C
Finally, for the w;, notice that for all j, K;w; = 0 (because wj; is in the Nullspace of all

the K;), and so D(w;) = 0 = Ow;.
From this it follows that D is diagonal (]



