MATH 110 - SOLUTIONS TO THE PRACTICE FINAL

PEYAM TABRIZIAN

Note: There might be some mistakes and typos. Please let me know if you find any!

EXERCISE 1

Theorem: [Cauchy-Schwarz inequality]

Let V be a vector space over \mathbb{F} with inner product $<,>$, and define $\|u\|=\sqrt{<u, u>}$.
Then for all u and v in V :

$$
|<u, v>| \leq\|u\|\|v\|
$$

Moreover, equality holds if and only if u is a multiple of v or v is a multiple of u

Proof: ${ }^{1}$

Fix u, v in V.

First of all, the result holds for $v=0$, because:

$$
<u, v>=<u, 0>=0 \leq\|u\| 0=\|u\|\|v\|
$$

And also if $v=0$, then $v=0 u$, so v is a multiple of u

Hence, from now on, for the rest of the proof, we may assume $v \neq 0$.
Now consider $\langle u-a v, u-a v\rangle$, where $a \in \mathbb{F}$ is to be selected later.
On the one hand, by the nonnegativity axiom of $<,>$, we have:

$$
<u-a v, u-a v>\geq 0
$$

On the other hand, expanding $<u-a v, u-a v>$ out, we get:

[^0]\[

$$
\begin{aligned}
<u-a v, u-a v> & =<u, u>+<u,-a v>+<-a v, u>+<-a v,-a v> \\
& =<u, u>-\bar{a}<u, v>-a<v, u>+a \bar{a}<v, v> \\
& =\|u\|^{2}-\bar{a}<u, v>-a<u, v>+|a|^{2}\|v\|^{2}
\end{aligned}
$$
\]

Combining this with (\star), we get:

$$
\|u\|^{2}+\bar{a}<u, v>+a<v, u>+|a|^{2}\|v\|^{2} \geq 0
$$

Now let $a=\frac{\langle u, v\rangle}{\langle v, v\rangle}=\frac{\langle u, v\rangle}{\|v\|^{2}}$ 2 (which is well-defined since $v \neq 0$)

In particular, we get:

$$
\bar{a}<u, v>=\frac{\overline{<u, v>}<u, v>}{\|v\|^{2}}=\frac{|<u, v>|^{2}}{\|v\|^{2}}
$$

and

$$
a \overline{<u, v>}=\frac{<u, v>\overline{<u, v>}}{\|v\|^{2}}=\frac{|<u, v>|^{2}}{\|v\|^{2}}
$$

and

$$
|a|^{2}\|v\|^{2}=\left(\frac{|<u, v>|}{\|v\|^{2}}\right)^{2}\|v\|^{2}=\frac{|<u, v>|^{2}}{\|v\|^{2}}
$$

Therefore, $(\star \star)$ becomes:

$$
\|u\|^{2}-\frac{|<u, v>|^{2}}{\|v\|^{2}}-\frac{\mid\langle u, v\rangle \dagger^{2}}{\|v\|^{2}}+\frac{\mid\langle u, v\rangle \dagger^{2}}{\|v\|^{2}} \geq 0
$$

That is:

$$
\|u\|^{2}-\frac{|<u, v>|^{2}}{\|v\|^{2}} \geq 0 \quad(\star \star \star)
$$

Solving for $\langle u, v\rangle$, we get:

$$
|<u, v>|^{2} \leq\|u\|^{2}\|v\|^{2}
$$

And taking square roots (given that all the terms are nonnegative), we have:

$$
|<u, v>| \leq\|u\|\|v\|
$$

Which is the Cauchy-Schwarz inequality!

[^1]Finally, if equality holds in the Cauchy-Schwarz inequality, that is, if $|<u, v>|=$ $\|u\|\|v\|$ then working our way backwards, then ($\star \star \star$) becomes an equality, and so ($\star \star$) becomes an equality becomes equalities, and in particular, (\star) becomes an equality, that is:

$$
<u-a v, u-a v>=0
$$

And hence, by the positivity axiom, $u-a v=0$, that is, $u=a v$, so u is a multiple of v.

Conversely, if $u=a v$ for some $a \in \mathbb{F}$, then:
$\left|<u, v>\left|=\left|<a v, v>\left|=\left|a<v, v>||a||<v, v>\left|=|a|\|v\|^{2}=|a|\|v\|\|v\|=\|a v\|\|v\|=\|u\|\|v\|\right.\right.\right.\right.\right.\right.$
So equality holds in the Cauchy-Schwarz inequality. Similarly if $v=a u$ for some $a \in \mathbb{F}$

EXERCISE 2

Let $\left(v_{1}, \cdots, v_{m}\right)$ be a basis for $N u l(T)$, and extend it to a basis $\left(v_{1}, \cdots, v_{m}, v_{m+1}, \cdots, v_{n}\right)$ of V.

Claim: $\left(T\left(v_{m+1}\right), \cdots, T\left(v_{n}\right)\right)$ is a basis of $\operatorname{Ran}(T)$.

Proof: We need to show that the set spans $\operatorname{Ran}(T)$ and is linearly independent

Span:

First of all, each $T\left(v_{m+1}\right), \cdots T\left(v_{n}\right)$ is in $\operatorname{Ran}(T)$ (by definition of $\operatorname{Ran}(T)$), and hence, because $\operatorname{Ran}(T)$ is a subspace of W,

$$
\operatorname{Span}\left(T\left(v_{m+1}\right), \cdots, T\left(v_{n}\right)\right) \subseteq \operatorname{Ran}(T)
$$

Conversely, let $w \in \operatorname{Ran}(T)$. Then $w=T(v)$ for some v in V.
But then, since $\left(v_{1}, \cdots, v_{n}\right)$ is a basis for V, we have $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$ for scalars a_{1}, \cdots, a_{n}.

But then:

$$
\begin{aligned}
T(v) & =T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right) \\
& =a_{1} T\left(v_{1}\right)+\cdots+a_{m} T\left(v_{m}\right)+a_{m+1} T\left(v_{m+1}\right)+\cdots+a_{n} T\left(v_{n}\right) \\
& =a_{1} 0+\cdots+a_{m} 0+a_{m+1} T\left(v_{m+1}\right)+\cdots+a_{n} T\left(v_{n}\right) \quad \text { Because } v_{1}, \cdots, v_{m} \text { are in } N u l(T) \\
& =a_{m+1} T\left(v_{m+1}\right)+\cdots a_{n} T\left(v_{n}\right) \\
& \in \operatorname{Span}\left(T\left(v_{m+1}\right), \cdots, T\left(v_{n}\right)\right)
\end{aligned}
$$

Hence, $w=T(v) \in \operatorname{Span}\left(T\left(v_{m+1}\right), \cdots, T\left(v_{n}\right)\right)$.
Hence, since w was arbitrary, we get:

$$
\operatorname{Ran}(T) \subseteq \operatorname{Span}\left(T\left(v_{m+1}\right), \cdots, T\left(v_{n}\right)\right)
$$

And therefore:

$$
\operatorname{Span}\left(T\left(v_{m+1}\right), \cdots, T\left(v_{n}\right)\right)=\operatorname{Ran}(T)
$$

So $T\left(v_{m+1}\right), \cdots, T\left(v_{n}\right)$ spans $\operatorname{Ran}(T)$.
$\underline{\text { Linear independence: }}$
Suppose $a_{m+1} T\left(v_{m+1}\right)+\cdots+a_{n} T\left(v_{n}\right)=0$.
Then $T\left(a_{m+1} v_{m+1}+\cdots+a_{n} v_{n}\right)=0$
Hence $a_{m+1} v_{m+1}+\cdots+a_{n} v_{n} \in \operatorname{Nul}(T)$
Hence $a_{m+1} v_{m+1}+\cdots+a_{n} v_{n}=a_{1} v_{1}+\cdots+a_{m} v_{m}$ for scalars a_{1}, \cdots, a_{m}, because $\left(v_{1}, \cdots, v_{m}\right)$ is a basis for $\operatorname{Nul}(T)$.

Hence $-a_{1} v_{1}-\cdots-a_{m} v_{m}+a_{m+1} v_{m+1}+\cdots+a_{n} v_{n}=0$.
However, $\left(v_{1}, \cdots, v_{n}\right)$ is linearly independent, hence $-a_{1}=\cdots=-a_{m}=a_{m+1}=$ $\cdots=a_{n}=0$

Hence $a_{m+1}=\cdots=a_{n}=0$, which is what we wanted to show.

Hence $\left(T\left(v_{m+1}\right), \cdots, T\left(v_{n}\right)\right)$ is a basis for $\operatorname{Ran}(T)$, and hence $\operatorname{dim}(\operatorname{Ran}(T))=$ $n-m$

But then, it follows that:

$$
\operatorname{dim}(V)=n=m+(n-m)=\operatorname{dim}(N u l(T))+\operatorname{dim}(\operatorname{Ran}(T))
$$

EXERCISE 3

Note: The explanations are optional, and are here to convince you why an answer is true or false.
(a) VERY FALSE !!! Remember that Prop1.9 ONLY works for TWO subspaces!
(Let $V=\mathbb{R}^{2}, U_{1}=\operatorname{Span}\{(1,0)\}$ (the x-axis), $U_{2}=\operatorname{Span}\{(0,1)\}$ (the y-axis), and $U_{3}=\operatorname{Span}\{(1,1)\}$ (the line $y=x$). Notice that $V \neq U_{1} \oplus$ $U_{2} \oplus U_{3}$ because $(0,0)$ can be written in two different ways as sums of vectors in U_{1}, U_{2}, U_{3}, namely $(0,0)=(1,0)+(0,-1)+(0,0)$, but also $(0,0)=(1,0)+$ $(0,1)+(-1,-1)$. This violates the definition of direct sums on page 15)
(b) FALSE
(Let $V=\mathbb{R}^{3}$, and let $T \in \mathcal{L}(V)$ be the linear transformation whose matrix is $\mathcal{M}(T)=A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$. Then $(1,0)$ and $(0,1)$ are eigenvectors of T, but $(1,1)=(1,0)+(0,1)$ isn't)
(c) TRUE
(See Theorem 8.35. For a direct proof: Let m be the minimal polynomial of T and p be the characteristic polynomial. Then by the division algorithm for polynomials, there exist polynomials q and r with $\operatorname{deg}(r)<\operatorname{deg}(m)$ such that $m=q p+r$. But then $m(T)=q(T) p(T)+r(T)$. But $m(T)=0$ by definition of the minimal polynomial, and $p(T)=0$ by the Cayley-Hamilton theorem, whence $0=0+r(T)$, so $r(T)=0$, However, $\operatorname{deg}(r)<\operatorname{deg}(m)$, whence $r \equiv 0$ (otherwise this would contradict the definition of m as the minimal polynomial). But then $m=q p+r=q p+0=q p$, so p divides m)
(d) TRUE
(If $\mathbb{F}=\mathbb{R}$, then the real spectral theorem applies, and if $\mathbb{F}=\mathbb{C}$, then $T^{*} T=$ $T T=T T^{*}$, so T is normal and the complex spectral theorem applies)
(e) FALSE

In general, the statement is false, and the reason is that we didn't specify whether the vector spacee is over \mathbb{R} or over \mathbb{C}.
(In the case $\mathbb{F}=\mathbb{C}$, the answer is FALSE, because for example if $V=\mathbb{C}$, then $T(v)=i v$ has only one eigenvalue, $\lambda=i$, which is not real.

However, in the case $\mathbb{F}=\mathbb{R}$, the answer is TRUE , See Theorem 8.2 in section 8 of Axler's paper, or Theorem 5.26 on page 92 of the book.)
(f) FALSE

If you take the statement as it is, it doesn't make sense. It should be 'generalized eigenspaces of a (given) linear operator T^{\prime}

Also, if you correct that statement, then it is FALSE if $\mathbb{F}=\mathbb{R}$, but TRUE if $\mathbb{F}=\mathbb{C}$.
(For the case $\mathbb{F}=\mathbb{C}$, this is just theorem 8.23 in the book. For the case $\mathbb{F}=\mathbb{R}$, consider $V=\mathbb{R}^{2}$, and let $T \in \mathcal{L}(V)$ be defined by $T(x, y)=(y,-x)$. Then $\mathcal{M}(T)=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$, which has no (real) eigenvalues, and hence each eigenspace of T is just $\{0\}$. And hence the direct sum of the generalized eigenspaces of T is just $\{0\}$, which is not equal to $V=\mathbb{R}^{2}$)

EXERCISE 4

Since S is nilpotent, there exists m such that $S^{m}=0$, and since T is nilpotent, there exists n such that $T^{n}=0$.

Now, because $T S=S T$, the binomial formula applies, that is, for every k :

$$
(S+T)^{k}=\sum_{j=0}^{k} a_{j} S^{j} T^{k-j}
$$

(technically $a_{j}=\frac{j!k!}{(j-k)!}$, but we won't need that here)
Now take $k=m+n$, then:

$$
\begin{aligned}
(S+T)^{m+n} & =\sum_{j=0}^{m+n} a_{j} S^{j} T^{m+n-j} \\
& =\sum_{j=0}^{m} a_{j} S^{j} T^{m+n-j}+\sum_{j=m+1}^{n} S^{j} T^{m+n-j}
\end{aligned}
$$

However, if $j \leq m$, then $m+n-j \geq m+n-m=n$, so $m=n-j=n+l$, where $l \geq 0$, and so:

$$
T^{m+n-j}=T^{n+l}=T^{n} T^{l}=0 T^{l}=0
$$

In particular $S^{j} T^{m+n-j}=S^{j} 0=0$, hence all the terms in the first sum are 0 .

On the other hand, if $j \geq m+1$, then $j=m+l$, where $l \geq 0$, and so:

$$
S^{j}=S^{m+l}=S^{m} S^{l}=0 S^{l}=0
$$

In particular, $S^{j} T^{m+n-j}=0 T^{m+n-j}=0$, hence all the terms in the second sum are 0 .

Combining this, we get:

$$
(S+T)^{m+n}=0
$$

Hence $S+T$ is nilpotent.

EXERCISE 5

(\Leftarrow) Suppose $x \in \operatorname{Nul}(P)$ and $y \in \operatorname{Ran}(P)$. We want to show that $<x, y>=0$.
Since $x \in \operatorname{Nul}(P), P(x)=0$, and since $y \in \operatorname{Ran}(P), y=P(z)$ for some $z \in V$.
But then:

$$
<x, y>=<x, P(z)>=<P^{*} x, z>=<P(x), z>=<0, z>=0
$$

Where in the third equality, we used the fact that $P^{*}=P$, since P is self-adjoint.
Hence $\langle x, y\rangle=0$, and we're done.
(\Rightarrow) Suppose $N u l(P) \perp \operatorname{Ran}(P)$. We want to show $P^{*}=P$. That is, for every x and y in V, we want to show that:

$$
<P x, y>=<x, P y>
$$

Notice that you can write:

$$
<P x, y>=<P x, P y+(y-P y)>=<P x, P y>+<P x, y-P y>
$$

However, notice that $P x \in \operatorname{Ran}(P)$ and $P(y-P y)=P y-P^{2} y=P y-P y=0$, so $y-P y \in \operatorname{Nul}(P)$.

Because $N u l(P) \perp \operatorname{Ran}(P)$ by assumption, we get that $<P x, y-P y>=0$. Therefore:

$$
<P x, y>=<P x, P y>
$$

But now, we can write:
$<P x, y>=<P x, P y>=<x+(P x-x), P y>=<x, P y>+<P x-x, P y>$
But $P y \in \operatorname{Ran}(P)$ and $P(P x-x)=P^{2} x-P x=P x-P y=0$, so $P x-x \in N u l(P)$.

Because $\operatorname{Nul}(P) \perp \operatorname{Ran}(P)$ by assumption, we get that $<P x-x, P y>=0$, and hence:

$$
<P x, y>=<x, P y>
$$

as we wanted to show

EXERCISE 6

Note: Remember how to calculate the matrix of a linear transformation with respect to a basis $\left(v_{1}, \cdots, v_{n}\right)$! For each basis vector v_{i}, calculate $T\left(v_{i}\right)$ and express your result as a linear combination of all your basis vectors $\left(v_{1}, \cdots, v_{n}\right)$.

Here:

$$
\begin{aligned}
T\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right] \\
& =\mathbf{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\mathbf{0}\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+\mathbf{3}\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+\mathbf{0}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Hence the first column of $\mathcal{M}(T)$ is:

Next:

$$
\begin{aligned}
T\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 1 \\
0 & 3
\end{array}\right] \\
& =\mathbf{0}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\mathbf{1}\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+\mathbf{0}\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+\mathbf{3}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Hence the second column of $\mathcal{M}(T)$ is:

Next:

$$
\begin{aligned}
T\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 0 \\
4 & 0
\end{array}\right] \\
& =\mathbf{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\mathbf{0}\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+\mathbf{4}\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+\mathbf{0}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Hence the third column of $\mathcal{M}(T)$ is:

Finally:

$$
\begin{aligned}
T\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 2 \\
0 & 4
\end{array}\right] \\
& =\mathbf{0}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\mathbf{2}\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+\mathbf{0}\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+\mathbf{4}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Hence the fourth column of $\mathcal{M}(T)$ is:

Putting everything together, we get:

$$
\mathcal{M}(T)=\left[\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2 \\
3 & 0 & 4 & 0 \\
0 & 3 & 0 & 4
\end{array}\right]
$$

EXERCISE 7

(\Rightarrow) Let $\left(v_{1}, \cdots, v_{n}\right)$ be a basis for V.
By definition, we know that $D\left(v_{i}\right)=\lambda_{i} v_{i}$ for some λ_{i}, where $i=1, \cdots n$.
Now fix i and define $K_{i} \in \mathcal{L}(V)$ by:

$$
\begin{aligned}
K_{i}\left(v_{1}\right) & =0 \\
\vdots & \\
K_{i}\left(v_{i-1}\right) & =0 \\
K_{i}\left(v_{i}\right) & =v_{i} \\
K_{i}\left(v_{i+1}\right) & =0 \\
\vdots & \\
K_{i}\left(v_{n}\right) & =0
\end{aligned}
$$

That is, $K_{i}\left(v_{j}\right)=0$ for $j \neq i$, and $K_{i}\left(v_{i}\right)=v_{i}$.
Note that K_{i} exists by the linear extension lemma.
More explicitly (we'll need this below), if $v \in V$, then there exist a_{1}, \cdots, a_{n} such that $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$ (because $\left(v_{1}, \cdots, v_{n}\right)$ is a basis for V), and then:

$$
\begin{aligned}
K_{i}(v) & =K_{i}\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right) \\
& =a_{1} K_{i}\left(v_{1}\right)+\cdots+a_{i} K_{i}\left(v_{i}\right)+\cdots+a_{n} K_{i}\left(v_{n}\right) \\
& =a_{1} 0+\cdots+a_{i} v_{i}+\cdots+a_{n} 0 \\
& =a_{i} v_{i}
\end{aligned}
$$

That is, $K_{i}(v)=a_{i} v_{i}$, where $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$

Now we only need to show 3 things:
(1) $D=\sum_{i=1}^{n} \lambda_{i} K_{i}$

Proof: Let $v \in V$, then $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$ for scalars $i=1, \cdots, n$.
But then:

$$
\begin{aligned}
D(v) & =D\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right) \\
& =a_{1} D\left(v_{1}\right)+\cdots+a_{n} D\left(v_{n}\right) \\
& =a_{1} \lambda_{1} v_{1}+\cdots+a_{n} \lambda_{n} v_{n} \\
& =\lambda_{1} a_{1} v_{1}+\cdots+\lambda_{n} a_{n} v_{n} \\
& =\lambda_{1} K_{1}(v)+\cdots+\lambda_{n} K_{n}(v) \\
& =\left(\sum_{i=1}^{n} \lambda_{i} K_{i}\right) v
\end{aligned}
$$

Since v was arbitrary, we get that $D=\sum_{i=1}^{n} \lambda_{i} K_{i}$
(2) $K_{i}^{2}=K_{i}$

Proof: Let $v \in V$, then $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$ for scalars a_{1}, \cdots, a_{n}.
But then:

$$
\begin{aligned}
K_{i}^{2}(v) & =K_{i}\left(K_{i} v\right) \\
& =K_{i}\left(K_{i}\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)\right) \\
& =K_{i}\left(a_{1} K_{i}\left(v_{1}\right)+\cdots+K_{i}\left(v_{i}\right)+\cdots+a_{n} K_{i}\left(v_{n}\right)\right) \\
& =K_{i}\left(a_{1} 0+\cdots+a_{i} v_{i}+\cdots+a_{n} 0\right) \\
& =K_{i}\left(a_{i} v_{i}\right) \\
& =a_{i} K_{i}\left(v_{i}\right) \\
& =a_{i} v_{i} \\
& =K_{i}(v)
\end{aligned}
$$

Since v was arbitrary, we get $K_{i}^{2}=K_{i}$ for all i
(3) If $i \neq j$, then $K_{i} K_{j}=0$

Proof: Let $v \in V$, then $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$ for scalars a_{1}, \cdots, a_{n}.

But then:

$$
\begin{aligned}
K_{i} K_{j}(v) & =K_{i}\left(K_{j} v\right) \\
& =K_{i}\left(K_{j}\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)\right) \\
& =K_{i}\left(a_{1} K_{j}\left(v_{1}\right)+\cdots+K_{j}\left(v_{j}\right)+\cdots+a_{n} K_{j}\left(v_{n}\right)\right) \\
& =K_{i}\left(a_{1} 0+\cdots+a_{j} v_{j}+\cdots+a_{n} 0\right) \\
& =K_{i}\left(a_{j} v_{j}\right) \\
& =a_{j} K_{i}\left(v_{j}\right) \\
& =0
\end{aligned}
$$

(where in the last line we used $j \neq i$)
Hence $K_{i} K_{j}=0$, since v was arbirary.
(\Leftarrow) For this, we use the result of exercise 11 in chapter 8 (which was on your homework), namely if $T \in \mathcal{L}(V)$, then:

$$
V=\operatorname{Ran}\left(T^{n}\right) \oplus N u l\left(T^{n}\right)
$$

Here with $T=K_{1}$, we get:

$$
V=\operatorname{Ran}\left(K_{1}^{n}\right) \oplus N u l\left(K_{1}^{n}\right)
$$

However, because $K_{1}^{2}=K_{1}$, we have $K_{1}^{n}=K_{1}$ (use induction), and hence:

$$
V=\operatorname{Ran}\left(K_{1}\right) \oplus N u l\left(K_{1}\right)
$$

Now let $U_{1}=N u l\left(K_{1}\right)$. First of all, U_{1} is invariant under K_{2}, because if $u_{1} \in U_{1}$, then $K_{1}\left(K_{2} u_{1}\right)=\left(K_{1} K_{2}\right) u_{1}=0 u_{1}=0$, so $K_{2} u_{1} \in \operatorname{Nul}\left(K_{1}\right)=U_{1}$. Hence, applying the result of exercise 11 in chapter 8 to $V=U_{1}$ and $T=K_{2}^{\prime}:=\left.\left(K_{2}\right)\right|_{U_{1}}$, we get:

$$
\operatorname{Nul}\left(K_{1}\right)=U_{1}=\operatorname{Ran}\left(K_{2}^{\prime}\right) \oplus \operatorname{Nul}\left(K_{2}^{\prime}\right)
$$

Claim: $\operatorname{Ran}\left(K_{2}^{\prime}\right)=\operatorname{Ran}\left(K_{2}\right)$
Proof: Suppose $v \in \operatorname{Ran}\left(K_{2}\right)$, then $v=K_{2}\left(v^{\prime}\right)$ for some $v^{\prime} \in V$. But then since $V=\operatorname{Ran}\left(K_{1}\right) \oplus \operatorname{Nul}\left(K_{1}\right)$, we get $v^{\prime}=v_{1}+v_{2}$, where $v_{1} \in \operatorname{Ran}\left(K_{1}\right)$, so $v_{1}=K_{1}\left(u_{1}\right)$ and $v_{2} \in \operatorname{Nul}\left(K_{1}\right)=U_{1}$. But then

$$
K_{2}\left(v^{\prime}\right)=K_{2}\left(v_{1}\right)+K_{2}\left(v_{2}\right)=K_{2}\left(K_{1} u_{1}\right)+K_{2}\left(v_{2}\right)=0 u_{1}+K_{2}\left(v_{2}\right)=K_{2}\left(v_{2}\right)=K_{2}^{\prime} v_{2}
$$

That is: $v=K_{2}\left(v^{\prime}\right)=K_{2}^{\prime}\left(v_{2}\right) \in \operatorname{Ran}\left(K_{2}^{\prime}\right)$
Conversely, if $v \in \operatorname{Ran}\left(K_{2}^{\prime}\right)$, then $v=K_{2}^{\prime}\left(v^{\prime}\right)$ for some $v^{\prime} \in U_{1} \subseteq V$, so $v=$ $K_{2}^{\prime}\left(v^{\prime}\right)=K_{2}\left(v^{\prime}\right) \in \operatorname{Ran}\left(K_{2}\right)$.

Claim: $N u l\left(K_{2}^{\prime}\right)=N u l\left(K_{1}\right) \cap N u l\left(K_{2}\right)$
Proof: Suppose $v \in N u l\left(K_{1}\right) \cap N u l\left(K_{2}\right)$, then $v \in N u l\left(K_{1}\right)=U_{1}$, and so $K_{2}^{\prime}(v)=$ $K_{2}(v)=0$, since $v \in N u l\left(K_{2}\right)$, and so $v \in \operatorname{Nul}\left(K_{2}^{\prime}\right)$.

Conversely, suppose $v \in N u l\left(K_{2}^{\prime}\right)$. Then $v \in U_{1}=N u l\left(K_{1}\right)$ (by definition of $\left.K_{2}^{\prime}\right)$), and hence $K_{2} v=K_{2}^{\prime} v=0$, so $v \in N u l\left(K_{2}\right)$ as well, and hence $v \in N u l\left(K_{1}\right) \cap N u l\left(K_{2}\right)$

Combining the two claims and (\star), we get:

$$
U_{1}=\operatorname{Ran}\left(K_{2}\right) \oplus N u l\left(K_{1}\right) \cap N u l\left(K_{2}\right)
$$

So if you let $U_{2}=N u l\left(K_{1}\right) \cap N u l\left(K_{2}\right)$, you get:

$$
U_{1}=\operatorname{Ran}\left(K_{2}\right) \oplus U_{2}
$$

And so:

$$
V=\operatorname{Ran}\left(K_{1}\right) \oplus \operatorname{Ran}\left(K_{2}\right) \oplus U_{2}
$$

Now in general, you can prove by induction on i^{3} that if $U_{i}=N u l\left(K_{1}\right) \cap \cdots \cap N u l\left(K_{i}\right)$, then:

$$
U_{i}=\operatorname{Ran}\left(K_{i}\right) \oplus U_{i+1}
$$

And also by induction:

$$
V=\operatorname{Ran}\left(K_{1}\right) \oplus \operatorname{Ran}\left(K_{2}\right) \oplus \operatorname{Ran}\left(K_{i}\right) \oplus U_{i}
$$

And in particular, with $i=n$, we get:

$$
V=\operatorname{Ran}\left(K_{1}\right) \oplus \operatorname{Ran}\left(K_{2}\right) \oplus \cdots \oplus \operatorname{Ran}\left(K_{n}\right) \oplus U_{n}
$$

Where $U_{n}=\operatorname{Nul}\left(K_{1}\right) \cap \cdots \cap \operatorname{Nul}\left(K_{n}\right)$.
That is:

$$
V=\operatorname{Ran}\left(K_{1}\right) \oplus \cdots \oplus \operatorname{Ran}\left(K_{n}\right) \oplus\left(N u l\left(K_{1}\right) \cap \cdots \cap N u l\left(K_{n}\right)\right)
$$

Note: If any of the above sets are 0 , just delete them from the list.

Let $\left(v_{1}^{i}, \cdots, v_{k_{i}}^{i}\right)$ be a basis for $\operatorname{Ran}\left(K_{i}\right)\left(\right.$ where $\left.k_{i}=\operatorname{dim}\left(\operatorname{Ran}\left(K_{i}\right)\right)\right)$ and $\left(w_{1}, \cdots, w_{p}\right)$ be a basis for $N u l\left(K_{1}\right) \cap \cdots \cap N u l\left(K_{n}\right)$.

Then because V is a direct sum of all the above spaces, we have that the whole list $\left.\left(v_{1}^{1}, \cdots, v_{k_{1}}^{1}, \cdots, v_{1}^{n}, \cdots, v_{k_{n}}^{n}\right), w_{1}, \cdots, w_{p}\right)$ is a basis for V.

To show D is diagonal, we need (as usual) to calculate $D\left(v_{j}^{k}\right)$ and $D\left(w_{i}\right)$:

First of all:

$$
D\left(v_{j}^{k}\right)=\left(\sum_{i=1}^{m} \lambda_{l} K_{i}\right)\left(v_{j}^{k}\right)=\sum_{i=1}^{m} \lambda_{i} K_{i}\left(v_{j}^{k}\right)
$$

Now $v_{j}^{k} \in \operatorname{Ran}\left(K_{k}\right)$, so $v_{j}^{k}=K_{k}\left(u_{j}^{k}\right)$ for some $\left.u_{j}^{k}\right)$, and hence:
$K_{i}\left(v_{j}^{k}\right)=K_{i} K_{k}\left(u_{j}^{k}\right)$, which is 0 if $i \neq k$, and if $i=k$, this is $K_{k}^{2}\left(u_{j}^{k}\right)=K_{k}\left(u_{j}^{k}\right)=v_{j}^{k}$

In other words, we get:

$$
D\left(v_{j}^{k}\right)=\lambda_{k} v_{j}^{k}
$$

Finally, for the w_{i}, notice that for all $j, K_{j} w_{i}=0$ (because w_{i} is in the Nullspace of all the K_{i}), and so $D\left(w_{i}\right)=0=0 w_{i}$.

From this it follows that D is diagonal

[^0]: Date: Monday, April 29th, 2013.
 ${ }^{1}$ The proof here is different from the one given in the book, but is equally valid. Feel free to memorize either one of them

[^1]: ${ }^{2}$ The idea is that we want to turn $a<v, u>$ into $\frac{\mid\left\langle u, v>\left.\right|^{2}\right.}{\|v\|^{2}}$

